skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kleiss, M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper examines the learning experiences of undergraduate students who conducted research as part of a multidisciplinary team. The research project involved five undergraduate students with different backgrounds in engineering as well as in arts and sciences, supervised by four architecture and civil engineering faculty and their three PhD students. The research investigates the behavior of new Tessellated Structural-Architectural (TeSA) systems made of repetitive patterns of tiles (tessellations) that are both aesthetically appealing and load bearing. The undergraduate students worked on three tasks: (1) studying the behavior of TeSA shear walls using small scale earthquake simulator tests, (2) studying the shear capacity of reinforced concrete TeSA tiles, and (3) studying the effect of different shapes and interlocking patterns on the performance of small scale TeSA beams. The undergraduate students used hands-on experiments and laboratory testing to study the performance of 3D printed or prefabricated interlocking tessellations. This paper discusses the technical skills, fundamental concepts, and power skills (communicating, writing, presenting, etc.) that the students obtained, as well as the challenges that they encountered. The students found the process of developing and executing hands-on experiments and analyzing experimental results effective for learning new technologies and fundamental concepts. These concepts included 3D printing methods, natural frequency of a structure, and structural response subjected to a shear force. Peer learning, collaboration between students with different backgrounds, and group discussions with all the team members facilitated a deeper understanding and broader perspective on design, performance, and construction of TeSA systems. The project took place during the COVID-19 pandemic, and the students found working and meeting remotely challenging at times. Proper guidance and timely feedback by the project investigators and their PhD students helped with resolving the challenges. 
    more » « less
  2. This paper describes the fabrication and assembly of tessellated precast reinforced concrete shear walls. These walls are being constructed and tested as part of an NSF-funded research project designed to demonstrate the concept of Tessellated Structural-Architectural (TeSA) systems. The over-arching goal of this research is to explore tessellation patterns that can be implemented on a large scale, are architecturally appealing, and provide structural function. TeSA systems are comprised of individual tiles arranged in tessellations, or repeating geometric patterns. Tiles are topologically interlocking, which means that they transfer forces due to their interlocking geometry rather than through a bonding adhesive. The benefit of such a system is the ability to localize failure and rapidly repair the individual damaged tiles, rather than the entire system. The specimen discussed in this paper is a precast concrete shear wall constructed from individually cast I-shaped tiles. Shear wall tests are forthcoming; this paper focuses instead on documenting technical solutions to difficulties faced during design, fabrication, and assembly of the test specimen. This paper is intended to provide lessons learned to others who are designing and building TeSA walls and thereby facilitate the benefits of these novel systems. 
    more » « less